a2 United States Patent

Liensberger et al.

US009477730B2

US 9,477,730 B2
Oct. 25, 2016

(10) Patent No.:
45) Date of Patent:

(54) WEB SERVICES RUNTIME FOR DATASET 2006/0195476 Al* 82006 NOTiooccccevvveee. G021871/;/9390?8;
TRANSFORMATION 2007/0226196 Al* 9/2007 Adyaetal.cceeeeenn. 767/3
2007/0242302 Al* 10/2007 Haller HO4L 67/02
(75) Inventors: Christian Liensberger, Bellevue, WA e 358/1.15
(US); Moe Khosravy, Bellevue, WA 2008/0040510 Al* 2/2008 Warner GOG6F 17/3089
(US); Erik Meijer, Mercer Island, WA 008/0120607 Al 59008 Dinpel 709/246
. : ippe
(US); Rene Bouw, Kirkland, WA (US) 2008/0201338 Al* 82008 Castro et al. 707/100
. . . . 2008/0288599 Al 112008 Kutchmark
(73) Assignee: Microsoft Technology Licensing, LLC, 2009/0228785 Al 9/2009 Creekbaum et al.
Redmond, WA (US) 2009/0234804 Al* 9/2009 Whitechapel et al. 707/3
2010/0198907 Al* 82010 Samsalovic GO1C 21/32
(*) Notice: Subject to any disclaimer, the term of this N 709/203
patent is extended or adjusted under 35 2012/0123924 Al 5/2012 Rose et al. ..ccooovevvenennns 705/35
U.S.C. 154(b) by 1095 days.
OTHER PUBLICATIONS
(21) Appl. No.: 12/914,787 Mary Kirtland “The Programmable Web: Web Services Provides
a1 Building Blocks for the Microsoft. NET” Published Date: Sep. 2000,
(22) Filed: Oct. 28, 2010 10 pages; http://msdn.microsoft.com/en-us/magazine/
(65) Prior Publication Data cc302315(printer).aspx. (Continued)
ontinue
US 2012/0109937 Al May 3, 2012
(51) Int. Cl Primary Examiner — Yuk Ting Choi
G0;$F }7/30 (2006.01) (74) Attorney, Agent, or Firm — Henry Gabryjelski; Kate
G060 10/10 (2012.01) Drakos; Micky Minhas
(52) US.CL (57) ABSTRACT
CPC ... GO6F 17/30569 (2013.01); GO6Q 10/10 . o .
(2013.01) Various aspects for providing a runtime for dataset trans-
5%) Tield of Classification S h ’ formation are disclosed. In one aspect, data consumption
(58) Field of Classification Searc requests are received. The requested data is retrieved from a
ISJSPC .1.. s ﬁ 1f 1hh 707/722 web service in an arbitrary form, and subsequently trans-
ee application lile for complete search history. formed into a standardized result from the arbitrary form. In
. another aspect, a user interface is displayed to a content
(56) References Cited provider, and an input identifying a transform function
selected by the content provider is received via the user
U.S. PATENT DOCUMENTS interface. A transform assembly is then generated based on
5096010 A * 11/1999 Teong et al. woooorcr. 709/223 the input, which facilitates retrieving data from a web
7:483:90 1 Bl 1/2009 Massoudi service in an arbitrary form, and transforming the data into
7,698,398 Bl 4/2010 Lai a standardized result by calling the selected transform func-
2004/0068586 Al* 4/2004 Xie ...cccooonrnnnn. GO6F 17/30569 tion. In yet another aspect, third party code is associated with
2005/0044367 AL* /2005 Gaspazini G06F7g?ﬁ42‘? a transform assembly. An execution of the third party code
PATAL s 713/172 is then managed such that at least one aspect of the transform
2005/0138606 AL* 6/2005 BASU woororoorooroeo GOGF 8/74 assembly is operated according to the execution.
717/136
2006/0173868 Al* 82006 Angele etal. 707/100 16 Claims, 15 Drawing Sheets
RURYHAE
TRARSFORR
ot
consimpnoN F '
REGUEST H
'*»,\ § I i] .*é(3
i (L. PARAMETERIZE TRANSEOR® §ER . EXECUTE THIRD 1,
@t REGUEST RETREVED DATA @g/ BARTY COUE
N :

WER SERVITE
REQUERY

EXTERNAL WES

BERVICES
420

e SERCE
RESFONSE

US 9,477,730 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

D. Fensel, “The Web Service Modeling Framework WSMF”, Pub-
lished Date: Jun. 2010; 33 Pages.

Dominic Charles Parry, “CREWS: A Component-driven, Run-time
Extensible Web Service Framework”, Published Date: Dec. 2003,
103 Pages.

IBM, “Introducing Host Access Transformation Services”, Pub-
lished Date: Unknown, 17 Pages, http://publib.boulder.ibm.com/
infocenter/hatshelp/v70/topic/com.ibm.hats.doc/doc/gsintro

* cited by examiner

US 9,477,730 B2

Sheet 1 of 15

Oct. 25, 2016

U.S. Patent

ISNOAST
INAEE FIM S
: ,

A%
S30iAMES
3 TYNMRE

1830034
. 3DIAM3S FIM

3
%,

v,

o

e
ASNOL5TY
SREODLH0

BN e
BYI8YL
H

300D ALNYD
QUIHL BLNOINE

F
et

T
ATBHESEY

HEOJIEHYIL

ViIYG O3A3NI3Y 183003

WHOAENYHL

SAYI L3NNIV

55555555

e, o

LeaneE

.&M INDLLARNSNGD

Yi¥dl

J

@m W, .m...,.\.x
Lmn
HRUNAY

§
-y

'O

U.S. Patent Oct. 25, 2016 Sheet 2 of 15 US 9,477,730 B2

i

RUNTIME UNIT

U.S. Patent Oct. 25, 2016 Sheet 3 of 15 US 9,477,730 B2

300

Recolve requests dirscted to consumption of data
associated with a content provider,

" 310

Retrieve data from web service i arbitrary form.

i 320

Teanstorm dats into standardized result from arbitrary
forns.,

Fi1G. 3

US 9,477,730 B2

Sheet 4 of 15

Oct. 25, 2016

U.S. Patent

RN S,
S ey,

{ 0¥
| gsvEviva
| WNOJSNYHL
e
:

;.,.,E...;;E.,.,.s
e e,
s ™
k3 *

¥
FRYHYIYG

FUGFERYHL

%
SHOONIA
FUVYMLI08

idd
SHIAOUL
INFINGD

ik
MAGAIEN

G

}!-
3
:
§
£
i

H

ARYEYIYG
HUCGABNYUL
WA

LU

oy
AINO
HOUVHIWOD

¥ O

U.S. Patent Oct. 25, 2016 Sheet 5 of 15 US 9,477,730 B2

-

COMPILATION UNIT

U.S. Patent Oct. 25, 2016 Sheet 6 of 15 US 9,477,730 B2

800

Bisplay user interface (o contend provider associated
with consumabie data.

% §10

Roecelve inpud from contend provider vig user interface
identifying transform function{s} selectad by contant
provider,

l 820

Geanerate transform assembly based on input, wherein
gangfonn assembly relrieves data feom web service in
arbitrary form, and whersin transform assembly
fravsforms dats into standardized result by calling
selected transform function(s).

US 9,477,730 B2

Sheet 7 of 15

Oct. 25, 2016

U.S. Patent

300D ALYV _M
ML A0 NOILDO®E s,
L BPLDNIIVOSNG L T
;;;;;;;;;;;;;;;;;;;; . o
| BOODALNIOUHL e i e e
40 NOLLNOEXE 3L Y07 |

zzzzzzzzzzzzzzzzzzzzzzzz s\
- w

8iL

NN 30

HANEOM

T N e e e e o e [, z,\%

(0L

i e i
i BRYEYLVE E0S
POALMYd QEiL

U.S. Patent Oct. 25, 2016 Sheet 8 of 15 US 9,477,730 B2

[

OPERATING
LORAPONENT
BAG

U.S. Patent Oct. 25, 2016 Sheet 9 of 15 US 9,477,730 B2

800
Associating third party code with transform assembly,
whaerein fransform assambly refrieves data from web
sarvice in arbitrary form, and whereln arsform
assermbly transforms data into commuon intermadiate
format.

l 910

Manage execution of third party code.

Operate aspect{s) of transform assembly according o
precution of thitd party code.

FI1G. 9

U.S. Patent Oct. 25, 2016 Sheet 10 of 15 US 9,477,730 B2

OO0

Publish content via infrastructurs.

L 1010

Develop applications for consuming content via
infrastructure.

i 1020

Conswme content with applicstions via infrastructum.

v% 1030

Agtomatically adrainister, audit, bitt and bandie detalls
on behaif of all parties in the cordent chain,

US 9,477,730 B2

Sheet 11 of 15

Oct. 25, 2016

U.S. Patent

"

e ———————————;

2%

i
3

I

RO e
g i

-

11°D14

ik
{aje0ig BB POISILIS J0 PEENIY

ek - 0L {510mAINS VORBUIDRY S S— 621

SIWBHIDSGNG SIBEBIING

gayi Bogng

niit {anue i1} soypny ¥ 4514 sRppoig
Juspusdspy §BiL 10 sasdorsasg
“Bajanriaeg sioensumpy | vonEoHddy
* D] $5900Y A

., o
S
e
e

o
P

PR

e

e
=
Y

s, Sortwenn s a e, mw@ w W a4 ngw s eI

US 9,477,730 B2

Sheet 12 of 15

Oct. 25, 2016

U.S. Patent

<O

[A% 3 e

0 98

T4 Wi
TR g 8
2623 Wi puw powelnugy

G574 BRIy

$ 7741 12
yostnhag AVOR

G423 VOREINRETY

13} Avsesang puv Bugng

N

/

~

£
fop X
Burg soysms
g B ot
5o Rzl POZE SHIEROT
A " suskery :
fx3g
{040
: tos RIOR
BEy g 32 B &%ww fusognd Aued
PRI W b % s A 62 srduiRang
y HTRERETY ssoueg rpanRg MMWMM.,
o} Hnsy vk B LA It :
o “Hel et SHTIRRUNE I RUOHEIBY ; e I
// frayBrel
e 4§ 328 896 o (2L R {adie Bunsyee
j mEgamy | ¢ v o %«m S S pow e
— peoy oS A6
"y s poo s
: : RO
g ; HIBFORNER.
founey "ol app i wiamonin g oBeanig preng aunw,mw o mw 8 mw« ﬁwmwﬁ M
3 ; T

US 9,477,730 B2

Sheet 13 of 15

Oct. 25, 2016

U.S. Patent

ZEEl
SINUNSUOT
¥

0g8l
SABUNSUOT
¥

ZEE
suldy

AN
sty

e
sildy

G2l pasiugg

K |

YLEL SIGHIOM
VORBILICY

(45% "
BAR 04 UON

132%7
SASE 0 J0d

POg. BIRg S04

2021
BIRY IREMSUWIOT)

41578 8
DHAING B 30 UOHBULOHY

U.S. Patent Oct. 25, 2016

PR,

i,
s e

e S

¢ 1430

g,
o R

Computing
Deoviey

Sheet 14 of 15

e Pl 74

e
1428 Computing Device

f

/w

~t446 7

Objact AN
1428 L o

Commundoations
Motwork/Bus

M35

- 1410

Sorver Dhjoct

-,
2
y

o

FiG. 14

i,
o o
- e

1438

US 9,477,730 B2

Libinct
1424

{ was

o -~
s -
ean P

Computing
Devica
1428

Stoands)

i

14346

- st
s

US 9,477,730 B2

Sheet 15 of 15

Oct. 25, 2016

U.S. Patent

c

IO

o s s st e o e S S a4 a5 S5 a0

US 9,477,730 B2

1
WEB SERVICES RUNTIME FOR DATASET
TRANSFORMATION

TECHNICAL FIELD

The subject disclosure relates to a runtime transformation
of arbitrary web services data in connection with providing
information as a service.

BACKGROUND

By way of background concerning some conventional
systems, computing devices have traditionally stored infor-
mation and associated applications and data services locally
to the device. Yet, with the evolution of on-line and cloud
services, information is increasingly being moved to net-
work providers who perform none, some or all of service on
behalf of devices. The evolution of network storage farms
capable of storing terabytes of data (with potential for
petabytes, exabytes, etc. of data in the future) has created an
opportunity to mimic the local scenario in a cloud, with
separation of the primary device and the external storage.

However, no cloud service or network storage provider
has been able to effectively provide information as a service
on any platform, with publishers, developers, and consumers
easily publishing, specializing applications for and consum-
ing any kind of data, in a way that can be tracked and audited
for all involved. In addition, due to the disparate number of
content providers and their typically proprietary schemas for
defining data, today, where disparate content providers do
not coordinate their publishing acts to the cloud with one
another, there is little opportunity to leverage the collective
power of such disparate publishing acts.

Content providers who choose to store their data via web
services may be reluctant to move their data elsewhere. In
order to provide such data for consumption, it would thus be
desirable to integrate web services into an infrastructure that
facilitates information as a service. To this end, it is noted
that data sets stored in relational databases generally exhibit
a consistency and uniformity that allows them to be queried
and exposed in a uniform manner. Data sets stored in web
services, however, lack consistency and uniformity, which
makes efficiently exposing such data particularly challeng-
ing. Accordingly, it would thus be desirable to provide a
mechanism for integrating arbitrary data originating from
web services into an infrastructure that facilitates informa-
tion as a service.

The above-described deficiencies of today’s devices and
data services are merely intended to provide an overview of
some of the problems of conventional systems, and are not
intended to be exhaustive. Other problems with the state of
the art and corresponding benefits of some of the various
non-limiting embodiments may become further apparent
upon review of the following detailed description.

SUMMARY

A simplified summary is provided herein to help enable a
basic or general understanding of various aspects of exem-
plary, non-limiting embodiments that follow in the more
detailed description and the accompanying drawings. This
summary is not intended, however, as an extensive or
exhaustive overview. Instead, the sole purpose of this sum-
mary is to present some concepts related to some exemplary
non-limiting embodiments in a simplified form as a prelude
to the more detailed description of the various embodiments
that follow.

10

15

20

25

30

35

40

45

50

55

60

65

2

In accordance with one or more embodiments and corre-
sponding disclosure, various non-limiting aspects are
described in connection with providing information as a
service from any platform. In one such aspect, a method that
facilitates providing a runtime for dataset transformation is
disclosed. The method can include receiving a request
directed to consumption of data associated with a content
provider. Here, it is contemplated that the data can be stored
in at least one database. The embodiment can further include
retrieving the data from a web service in an arbitrary form,
as well as transforming the data into a standardized result
from the arbitrary form.

In another aspect, a method for generating a transform
assembly to facilitate a runtime dataset transformation is
disclosed. A user interface is displayed to a content provider,
and an input from the content provider is received via the
user interface. Here, the content provider is associated with
consumable data stored in at least one database, and the
input identifies at least one transform function selected by
the content provider. The method can further include gen-
erating a transform assembly based on the input. For this
embodiment, the transform assembly retrieves the data from
a web service in an arbitrary form, and also transforms the
data into a standardized result by calling the at least one
transform function.

In yet another aspect, a method for executing third party
code to facilitate a runtime dataset transformation is dis-
closed. This embodiment includes associating a third party
code with a transform assembly. Here, the transform assem-
bly retrieves data from a web service in an arbitrary form,
and also transforms the data into a common intermediate
format. The method further includes managing an execution
of the third party code, and operating at least one aspect of
the transform assembly according to the execution.

Other embodiments and various non-limiting examples,
scenarios and implementations are described in more detail
below.

BRIEF DESCRIPTION OF THE DRAWINGS

Various non-limiting embodiments are further described
with reference to the accompanying drawings in which:

FIG. 1 illustrates an exemplary system that facilitates
providing a runtime for dataset transformation according to
an embodiment;

FIG. 2 is a block diagram illustrating an exemplary
runtime unit configured to facilitate dataset transformations
according to an embodiment;

FIG. 3 is a flow diagram illustrating an exemplary non-
limiting embodiment for providing a runtime for dataset
transformation according to an embodiment;

FIG. 4 illustrates an exemplary system that facilitates
generating a transformation assembly according to an
embodiment;

FIG. 5 is a block diagram illustrating an exemplary
compilation unit configured to generate a transformation
assembly according to an embodiment;

FIG. 6 is a flow diagram illustrating an exemplary non-
limiting embodiment for generating a transformation assem-
bly according to an embodiment;

FIG. 7 illustrates an exemplary system that facilitates
managing an execution of third party code according to an
embodiment;

FIG. 8 is a block diagram illustrating an exemplary
worker role unit configured to manage an execution of third
party code according to an embodiment;

US 9,477,730 B2

3

FIG. 9 is a flow diagram illustrating an exemplary non-
limiting embodiment for managing an execution of third
party code according to an embodiment;

FIG. 10 is a flow diagram illustrating an exemplary
sequence for a non-limiting infrastructure for information
provided as a service from any platform;

FIG. 11 is a block diagram illustrating an exemplary
non-limiting infrastructure for information provided as a
service from any platform;

FIG. 12 is a block diagram illustrating an exemplary
non-limiting set of implementation specific details for an
infrastructure for information provided as a service from any
platform;

FIG. 13 is illustrative of exemplary consumption of data
from an exemplary infrastructure for information provided
as a service from any platform;

FIG. 14 is a block diagram representing exemplary non-
limiting networked environments in which various embodi-
ments described herein can be implemented; and

FIG. 15 is a block diagram representing an exemplary
non-limiting computing system or operating environment in
which one or more aspects of various embodiments
described herein can be implemented.

DETAILED DESCRIPTION

Overview

Various aspects are disclosed which automatically inte-
grate web services and transformation functions into an
infrastructure that facilitates information as a service. As
discussed in the background, it is desirable to expose arbi-
trary data sets, originating from both databases and web
services. To this end, it is noted that data sets stored in
relational databases generally exhibit a consistency and
uniformity that allows them to be queried and exposed in a
uniform manner. Data sets stored in web services, however,
lack consistency and uniformity, which makes efficiently
exposing such data particularly challenging.

The various embodiments disclosed herein are directed
towards resolving the lack of consistency and uniformity in
web services, which allows web services to be substantially
treated like a relational store, with some graceful degrada-
tion based on the support particular web services may offer.
For instance, in an aspect, a web services transformation
runtime is disclosed, which creates an application environ-
ment whereby content providers can provide an assembly
that transforms the current behavior of their web service into
behavior compliant with providing information as a service.
Moreover, depending on its current behavior, it is contem-
plated that a web service’s behavior may be augmented,
and/or that a level of compliancy and desired graceful
degradation of the behavior can be captured. By isolating
transformation code and capturing transformation metadata,
the runtime is able to provide any of a plurality of services.
For example, in a particular embodiment, the runtime is
configured to provide a pipeline of multiple transformations
which connect to a billing infrastructure. Embodiments are
also disclosed which facilitate developing custom transfor-
mations.

Web Services Runtime

FIG. 1 illustrates an exemplary system that facilitates
providing a runtime for dataset transformation according to
an embodiment. As illustrated, such a system can include
runtime unit 100, which is communicatively coupled to
external web services 120. Within such embodiment, it is
contemplated that requests for a content provider’s data
hosted by external web services 120 are processed by

5

10

20

25

30

35

40

45

50

55

60

65

4

runtime unit 100. In a particular aspect, runtime unit 100
includes transformation assembly 110, which is uploaded by
a content provider and facilitates such processing. For
instance, upon receiving a data consumption request, it is
contemplated that transformation assembly 110 will provide
external web services 120 with a parameterized version of
the request. Moreover, transform assembly 110 can be
configured to ascertain input parameters which map to the
particular web service hosting the requested data. To this
end, it should be noted that data retrieved from external web
services 130 can be received by transform assembly 110 in
any of a plurality of forms. Accordingly, in order to provide
uniformity across disparate data types, transform assembly
110 can be further configured to transform data received in
an arbitrary form into a standardized result. Here, it should
be noted that such standardized result can include results in
any of a plurality of formats including, for example, a
tabular result, a JavaScript Object Notation (JSON) result,
an Atom Syndication Format (ATOM) result, a Really
Simple Syndication (RSS) result, or an Extensible Markup
Language (XML) result. The standardized result can then be
further processed by executing third party code, if desired,
prior to outputting the outgoing response.

It is contemplated that runtime unit 100 will thus provide
content providers with a desirable application environment
for transforming the current behavior of their web service
into behavior compliant with providing information as a
service. In an aspect, runtime unit 100 facilitates a unifica-
tion of return values associated with on-boarded web ser-
vices towards standardized result sets. By providing such
unification, datasets originating from both web services and
relational stores can be managed in a uniform manner.
Further aspects are also contemplated in which web services
are mapped onto parameterized functions that return stan-
dardized result sets. Indeed, by mapping web services onto
parameterized functions, relational store capabilities of web
services data can be realized including for example, projec-
tion, filtering, ordering, joining, and even the ability to
accept a serialized language integrated query (LINQ)
expression tree as input.

In another aspect, runtime unit 100 enables content pro-
viders to on-board a large range of web services with
different “feature levels” (i.e., levels of functional support).
For this particular embodiment, it is contemplated that such
feature levels can be configured during on-boarding of a web
service, regardless of whether the web service is delivering
the feature, and/or whether the feature is provided by
runtime unit 100. By implementing this approach, a gradual
increase in functionality is enabled, which allows for dif-
ferentiated offerings by the content providers. Content pro-
viders can thus be charged based on the particular value(s)
of application programming interfaces (APIs) they utilize in
their feature level.

In another aspect, it is contemplated that transformations
may be utilized through a query to produce a bindable
schema to user interface elements such as charts and graphs.
Namely, embodiments are disclosed whereby content pro-
viders can use and extend the transformation methods
described herein to bind to visual elements such as charts
and graphs. Here, it should be further noted that transfor-
mations can also be attached to assets, which go beyond
developer scenarios.

In yet a further aspect, runtime unit 100 can be configured
to facilitate a custom worker role. Within such embodiment,
well-defined APIs and a configurable pipeline of transfor-
mation functions can be offered, wherein operational man-
agement support can be provided such as, scaling, security

US 9,477,730 B2

5

patches, health monitoring, etc. For this particular embodi-
ment, a mechanism is also disclosed whereby independent
software vendors (ISVs) can plug in their solutions for any
of a various scenarios including, for example, complex
on-boarding and/or billing scenarios.

Referring next to FIG. 2, a block diagram of an exemplary
runtime unit configured to facilitate dataset transformations
according to an embodiment is provided. As shown, runtime
unit 200 can include processor component 210, memory
component 220, request component 230, retrieval compo-
nent 240, transform component 250, service component 260,
generation component 270, and library component 280.

In one aspect, processor component 210 is configured to
execute computer-readable instructions related to perform-
ing any of a plurality of functions. Processor component 210
can be a single processor or a plurality of processors
dedicated to analyzing information to be communicated
from runtime unit 200 and/or generating information that
can be utilized by memory component 220, request compo-
nent 230, retrieval component 240, transform component
250, service component 260, generation component 270,
and/or library component 280. Additionally or alternatively,
processor component 210 can be configured to control one
or more components of runtime unit 200.

In another aspect, memory component 220 is coupled to
processor component 210 and configured to store computer-
readable instructions executed by processor component 210.
Memory component 220 can also be configured to store any
of a plurality of other types of data including generated by
any of request component 230, retrieval component 240,
transform component 250, service component 260, genera-
tion component 270, and/or library component 280.
Memory component 220 can be configured in a number of
different configurations, including as random access
memory, battery-backed memory, hard disk, magnetic tape,
etc. Various features can also be implemented upon memory
component 220, such as compression and automatic back
up, e.g., use of a Redundant Array of Independent Drives
configuration.

Runtime unit 200 can also include request component 230
and retrieval component 240. Within such embodiment,
request component 230 can be configured to receive requests
for consuming data associated with a content provider and
stored in at least one database, whereas retrieval component
240 is configured to retrieve the data from a web service in
an arbitrary form. Here, to facilitate retrieving data stored in
any of a plurality of forms, retrieval component 240 can be
configured to map the web service onto a parameterized
function.

As illustrated, runtime unit 200 can further include trans-
form component 250, which is configured to transform data
retrieved by retrieval component 240 into a standardized
result. In an aspect, data transformed by transform compo-
nent 250 can be further processed while in its transformed
state. To facilitate such embodiment, runtime unit 200 can
include services component 260, which is configured to
process standardized results in any of a plurality of ways.
For instance, it is contemplated that such processing may
include performing a projection, a filtering, an ordering,
and/or a joining operation on the standardized result. Other
embodiments are also contemplated, wherein the retrieved
data is transformed into a tabular result configured to accept
a serialized language integrated query (LINQ) expression
tree as input.

In an aspect, services component 260 can also be config-
ured to process standardized results according to a hierarchy
of feature levels. Namely, an embodiment is disclosed in

20

25

40

45

55

6

which a feature level is associated with each content pro-
vider, wherein services component 260 is configured to limit
its processing of transformed data to a set of operations
authorized by the particular feature level associated with a
corresponding content provider. Within such embodiment, it
is further contemplated that feature levels can be toggled
according to an input received from the content provider.
Indeed, since content providers may desire/require different
levels of support, services component 260 can be configured
to bill content providers according to the particular feature
level selected by each content provider. A scalable billing
model is thus disclosed in which each feature level can be
monetized based on a location of the feature level within the
hierarchy. For example, a feature level that provides more
processing capabilities for the transformed data can be
priced higher than another feature level which may provide
less processing capabilities.

As illustrated, runtime unit 200 can also include genera-
tion component 270, which is configured to generate trans-
form assemblies based on inputs received from content
providers. For this particular embodiment, transform com-
ponent 250 can be configured to transform data via such
transform assemblies. Moreover, transform assemblies can
be generated, which transform data by calling any of a
plurality of transform functions. To this end, it is contem-
plated that at least a subset of the transform functions may
be stored locally and/or externally. For instance, in an
aspect, library component 280 can be configured to maintain
a local library of selectable transform functions. In another
aspect, however, retrieval component can be configured to
access an external library of selectable transform functions.

FIG. 3 is a flow diagram illustrating an exemplary non-
limiting embodiment for providing a runtime for dataset
transformation according to an embodiment. At 300,
requests directed towards a consumption of data associated
with a content provider are received. The requested data is
then retrieved from a web service in an arbitrary form at 310,
followed by the retrieved data being transformed into a
standardized result from the arbitrary form at 320.

FIG. 4 illustrates an exemplary system that facilitates
generating a transformation assembly according to an
embodiment. As illustrated, system 400 can include compi-
lation unit 420, independent software vendors 430, and
content providers 440, which are communicatively coupled
via network 410. For this particular embodiment, compila-
tion unit 420 can be configured to provide content providers
440 with a user interface to generate transform assemblies
utilized by a web services runtime unit, as disclosed herein.
To this end, it should be noted that such transform assem-
blies can be generated from transform functions within local
transform database 422 provided by compilation unit 420, as
well as from the on-boarding of transformation functions
from external transform databases 432 and 442, respectively
provided by independent software vendors 430 and content
providers 440. With respect to externally provided transform
functions, it should be further noted that such functions
could be allowed to run within a worker role hosted by
content providers 440 themselves to “enrich” responses,
and/or such functions could be could run within an isolated
worker role hosted by compilation unit 420. Indeed, com-
pilation unit 420 may be configured to provide a configu-
rable pipeline of transformation functions which allow inde-
pendent software vendors 430 to provide value-add services
to help create/maintain such transform assemblies, wherein
on-boarding tools and transformation libraries can be
executed from within compilation unit 420.

US 9,477,730 B2

7

In a further aspect, compilation unit 420 can provide
content providers 440 with a “no source code, just configu-
ration” experience to configure their web service in the
runtime unit. Within such embodiment, transform assem-
blies are generated automatically with a metadata API and
runtime APIs, wherein a manifest based on a conceptual
model (CSDL) is utilized. This approach allows content
providers 440 to on-board transform assemblies without
writing code, while still reaping the run-time benefits pro-
vided by the runtime unit.

Here, it should be noted that a configuration-based
approach defines how to assemble a transformation, wherein
content providers 440 may only specify repeating nodes and
how to “fill” the properties of such repeating nodes. In an
aspect, XPath expressions can be used to fill each of these
properties. Exemplary properties can, for example, include
how to expose the web service, the web service uri to call,
the input parameters, and/or the definition of the results,
including how to “flatten” an XML response of the web
service.

Referring next to FIG. 5, a block diagram illustrates an
exemplary compilation unit configured to generate a trans-
formation assembly in accordance with various aspects. As
illustrated, compilation unit 500 can include processor com-
ponent 510, memory component 520, interface component
530, selection component 540, and generation component
550.

Similar to processor component 210 in runtime unit 200,
processor component 510 is configured to execute com-
puter-readable instructions related to performing any of a
plurality of functions. Processor component 510 can be a
single processor or a plurality of processors dedicated to
analyzing information to be communicated from compila-
tion unit 500 and/or generating information that can be
utilized by memory component 520, interface component
530, selection component 540, and/or generation component
550. Additionally or alternatively, processor component 510
can be configured to control one or more components of
compilation unit 500.

In another aspect, memory component 520 is coupled to
processor component 510 and configured to store computer-
readable instructions executed by processor component 510.
Memory component 520 can also be configured to store any
of a plurality of other types of data including data generated
by any of interface component 530, selection component
540, and/or generation component 550. Here, it is noted that
memory component 520 is analogous to memory component
220 in runtime unit 200. Accordingly, it can be appreciated
that any of the aforementioned features/configurations of
memory component 220 are also applicable to memory
component 520.

As illustrated, compilation unit 500 can also include
interface component 530 and selection component 540.
Within such embodiment, interface component 530 is con-
figured to display a user interface to a content provider,
whereas selection component 540 is configured to identify at
least one transform function selected by the content provider
via the user interface. For this particular embodiment, it is
contemplated that content providers are associated with data
consumable from an infrastructure providing information as
a service.

In a further aspect compilation unit 500 can also include
generation component 550, which is configured to generate
a transform assembly based on the transform function(s)
selected by the content provider. Here, it is contemplated
that transform assemblies generated by generation compo-
nent 550 can be configured to retrieve data from a web

10

15

20

25

30

35

40

45

50

55

60

65

8

service in an arbitrary form, and transform the retrieved data
into a standardized result. Moreover, transform assemblies
can be generated which transform data into a standardized
result, from an arbitrary form, by calling transform functions
selected by the content provider. To this end, it should be
noted that transform assemblies can be configured to call
externally stored transform functions, as well as locally
stored transform functions.

In a further aspect, it is contemplated that generation
component 550 can be configured to generate transform
assemblies in any of a plurality of ways. For instance,
generation component 550 can be configured to bind trans-
form functions to a graphical representation of transformed
data. Generation component 550 can also be configured to
link multiple transform functions selected by a content
provider. In a particular embodiment, generation component
550 is configured to link a first transform function with a
second transform function, wherein at least one of the first
transform function or the second transform function are
provided by an independent software vendor (ISV).

It should also be noted that generation component 550 can
be further configured to provide content providers with a
user-friendly mechanism for generating custom transform
assemblies. For example, an embodiment is disclosed in
which a codeless input is received from the content provider.
Within such embodiment, generation component 550 is
configured generate transform assemblies by executing at
least one application programming interface (API) accord-
ing to a manifest based on a conceptual model (CSDL).

FIG. 6 is a flow diagram illustrating an exemplary non-
limiting embodiment for generating a transformation assem-
bly according to an embodiment. At 600, a user interface is
displayed to a content provider associated with consumable
data. Next, at 610, an input is received from the content
provider via the user interface identifying at least one
transform function selected by the content provider. A
transform assembly is then generated based on the input at
620, which retrieves data from a web service in an arbitrary
form, and which transforms the retrieved data into a stan-
dardized result by calling the transform function(s) selected
by the content provider.

FIG. 7 illustrates an exemplary system that facilitates
managing an execution of third party code according to an
embodiment. As illustrated, system 700 can include worker
role unit 710, which is communicatively coupled to trans-
form assembly database 720 and third party code database
730. Within such embodiment, worker role unit 710 can be
configured to provide a custom worker role, which allows
for the managed execution of third party code. Here, it
should be noted that such custom worker role can be
completely managed by the web services runtime unit
disclosed herein, resulting in the ability to provide runtime,
load time and on-boarding time features/services.

It is contemplated that any of a plurality of runtime
features/services may be supported via third party code. For
instance, an automatic/configurable scale out and load bal-
ancing of worker roles can be provided. Indeed, with
increased demand, additional instances of the custom
worker role will be instantiated, which will result in addi-
tional costs for the content provider, but which will be
directly attributable to revenue generation. Other desirable
runtime features/services can include integrating into a
billing platform for information as a service, which can
allow for custom billing events. Health monitoring, both of
worker role unit 710, as well as the back-end web service
can also be provided. An isolation of execution can also be
supported, as provided by the worker role concept. Further

US 9,477,730 B2

9

runtime features/services which are supportable can include
compliance, logging, formatting, paging, projection (i.e.,
augmenting a basic web service to provide more features, as
well as the ability to compose with other third party services
(i.e., a join feature).

Several load time features/services are also contemplated.
For instance, a feature/service can be implemented in which
a transformation assembly exposes a standard interface to be
called by the runtime and return a standard result set. A
feature/service can also be implemented in which a trans-
formation assembly exposes an API to access a metadata
document, describing the details of a result set.

With respect to on-boarding time, exemplary features/
services are also disclosed. For instance, a feature/service
can be implemented in which an upload of the content
provider’s transformation assembly includes code to call the
web service and transform the response into a well-defined
result set. A code verification feature/service for the trans-
formation assembly at “on-board” time can also be imple-
mented to ensure security compliance. Furthermore, seman-
tics of parameters and columns in a result set can be defined
to create a basis for the meshing/composing of datasets.

Referring next to FIG. 8, a block diagram illustrates an
exemplary worker role unit configured to manage an execu-
tion of third party code in accordance with various aspects.
As illustrated, worker role unit 800 can include processor
component 810, memory component 820, relation compo-
nent 830, management component 840, and operating com-
ponent 850.

Similar to processor components 210 and 510 in resource
management unit 200 and compilation unit 500, respec-
tively, processor component 810 is configured to execute
computer-readable instructions related to performing any of
a plurality of functions. Processor component 810 can be a
single processor or a plurality of processors dedicated to
analyzing information to be communicated from worker role
unit 800 and/or generating information that can be utilized
by memory component 820, relation component 830, man-
agement component 840, and/or operating component 850.
Additionally or alternatively, processor component 810 can
be configured to control one or more components of worker
role unit 800.

In another aspect, memory component 820 is coupled to
processor component 810 and configured to store computer-
readable instructions executed by processor component 810.
Memory component 820 can also be configured to store any
of a plurality of other types of data including data generated
by any of relation component 830, management component
840, and/or operating component 850. Here, it is noted that
memory component 820 is analogous to memory compo-
nents 220 and 520 in resource management unit 200 and
compilation unit 500, respectively. Accordingly, it can be
appreciated that any of the aforementioned features/configu-
rations of memory components 220 and 520 are also appli-
cable to memory component 820.

As illustrated, worker role unit 800 can also include
relation component 830. Within such embodiment, relation
component 830 is configured to associate a third party code
with a transform assembly. Here, it is contemplated that
transform assemblies are configured to retrieve data from a
web service in an arbitrary form, and transform the retrieved
data into a common intermediate format.

In another aspect, worker role unit 800 includes manage-
ment component 840, which is configured to manage an
execution of the third party code. Within such embodiment,
management component 840 can be configured to execute
different types of third party code to provide any of various

10

15

20

25

30

35

40

45

50

55

60

65

10

transform assembly services. It should be noted that such
services can include runtime services, load time services,
and/or on-boarding services. For instance, management
component 840 can be configured to execute third party
code at runtime to provide a runtime service associated with
a particular transform assembly. However, management
component 840 can also be configured to execute third party
code at load time to provide a load time service, as well as
at on-boarding time to provide an on-boarding time service.

Worker role unit 800 can also include operating compo-
nent 850. Within such embodiment, operating component
850 is configured to operate transform assemblies according
to the third party code managed by management component
840. Moreover, depending on the type of service facilitated
by management component 840, operating component 850
can be configured to operate various transform assembly
aspects including, for example, aspects directed towards a
runtime service, a load time service, and/or an on-boarding
time service. In a particular embodiment, operating compo-
nent 850 can be configured to operate a billing aspect of a
transform assembly based on third party code to facilitate
billing content providers individually according to their
desired suite of services.

FIG. 9 is a flow diagram illustrating an exemplary non-
limiting embodiment for managing an execution of third
party code according to an embodiment. At 900, a third party
code is associated with a transform assembly. For this
particular embodiment, the transform assembly retrieves
data from a web service in an arbitrary form, and transforms
the retrieved data into a common intermediate format. Next,
an execution of the third party code is managed at 910. At
least one aspect of the transform assembly is then operated
according to the execution of the third party code.
Supplemental Context for Information as a Service

The following description contains supplemental context
regarding potential non-limiting infrastructure, architectures
and/or associated services to further aid in understanding
one or more of the above embodiments. Any one or more of
any additional features described in this section can be
accommodated in any one or more of the embodiments
described above with respect to updating of data set seman-
tics and corresponding access APIs for information as a
service from any platform. While such combinations of
embodiments or features are possible, for the avoidance of
doubt, no embodiments set forth in the subject disclosure are
to be considered limiting on any other embodiments
described herein.

By way of some additional background, today, while
information can be obtained over networks, such as the
Internet, today’s offerings tend to the proprietary in terms of
access and framework, and are thus limited in terms of third
party provider participation. For instance, currently, there is
no adequate business model for commercial content provid-
ers to publish their data in a way that does not relinquish at
least some of the value of such commercial content, and thus
historically, owners of valuable content have tended to
expose that content through limited proprietary means. Or,
in instances where storage of such content is provided by
secure cloud storage providers, there is little value in storage
alone when a consumer wades through thousands of tables
to potentially find an item of interest as a result. In addition,
even where cloud storage providers attempt to collect data
from various providers, at most such providers can only
boast a modest, small or incomplete catalog of data.

Much of the stunting of potential growth in this area has
been the result of mistrust over handling and IP, e.g.,
copyrights. In short, big players don’t trust cloud providers

US 9,477,730 B2

11

with crown jewels because a single compromise can end the
value of the data. In addition, such cloud providers to date
have had a weak position with respect to information
workers who wish to extract value from such data for their
informational needs, and in addition, due to the proprietary
nature of such systems, developers have thus far had limited
ability to expand tools for developing informational capa-
bilities.

Accordingly, as described for one or more embodiments,
an infrastructure for information as a service is provided that
accommodates all classes of individuals: publishers, devel-
opers, information workers, and consumers. The infrastruc-
ture enables information discovery, e.g., the ability to dis-
cover, acquire, and consume structured and blob datasets to
power any application—on any platform and any form
factor, e.g., any screen size. The infrastructure further
enables brokerage business, e.g., a partner driven ecosystem
and global reach to deliver data and functionality to devel-
opers and information workers. The infrastructure also
allows analytics and reporting, e.g., a single click analysis to
augment private data with public data. In this regard, due to
the open nature of various implementations of the infra-
structure, any application developer can develop mobile,
cloud, and/or desktop applications to facilitate the publish-
ing, processing, querying and/or retrieval of data.

To write applications, one can register for account infor-
mation, e.g., sign in with Live ID, and be provided with an
account key by which to access the “blob” via structured and
real-time web services enabled for the infrastructure for
information as a service as described for one or more
embodiments herein. In one aspect, developers can explore
the APIs visually before coding begins. For instance, a
service explorer module or set of modules can be used by
developers to visually construct representational state trans-
fer (REST) API queries and preview the content according
to a variety of packages, such as, but not limited to exten-
sible markup language (XML), ATOM, RAW (for blob and
real-time content), or in a table view, e.g., for structured
data. For example, a developer merely provides his or her
account key and selects to preview the content.

Accordingly, developers can build mobile, desktop or
service applications on any platform. While resulting REST
queries can be copied into a new developer application, the
infrastructure for information as a service also enables the
ability to consume automatically generated C# proxy classes
to climinate any need to create a local object model or
generate and understand the details of XML or web service
code. In this regard, in another non-limiting beneficial
aspect, a developer can download the proxy classes and
include them in the developer’s applications to consume
service data with as few as a couple lines of code.

In this regard, the various embodiments of an infrastruc-
ture for information as a service allow developers and
information workers to find, acquire, and consume data in
their applications and analytics scenarios instantly, periodi-
cally, or over some other function of time specified by the
application developer. As mentioned, a developer obtains an
account key which then accompanies web services calls to
the network services enabling information as a service as
described for one or more embodiments herein for content
requests and subscribing to the content of interest.

Thus, in one aspect, the account key provided by the
infrastructure for information as a service as described for
one or more embodiments herein is the developer’s private
key. This key enables billing and reporting on content used
in connection with the developer’s applications. As such,
this private developer key is not to be shared without

10

15

20

25

30

35

40

45

50

55

60

65

12

purpose, and precautions in securing the key are to be taken
where developing native applications running on mobile or
desktop solutions and planning to integrate the key as part of
the deployment. For example, cryptographic storage can be
used to ensure the key is not cracked.

In addition to the account key, which is used to track the
application consuming the content, the user ID can be a
particular user ID that is a globalidentifier (GID) that
represents the developer’s individual users. This field allows
billing for content that is priced on a per-user basis pro-
grammatically. For example, if a developer is developing a
mobile application with an individual user consuming the
application, the developer returns the same GID each time
requests are made on behalf of that individual user. How-
ever, if the developer is developing a web portal and issuing
web service requests on behalf of a variety of users, it is up
to the developer to assign a new GID for each user visiting
the portal. For example, each registered user can be assigned
a GID or each IP address/port combination can be assigned
a user 1D, GID, etc.

While REST APIs can be constructed on any platform to
consume content from the infrastructure for information as
a service as described for one or more embodiments herein,
in one embodiment, proxy classes can be dynamically
generated for services in C#. Achieving this is a matter of
downloading the object models, adding them to the current
developer project, and updating the account and user values,
e.g., particular user values.

If a developer would like to issue requests manually, an
example is provided below, but for any service, the preview
function can be used, or the URLSs created from the Service
Explorer can be invoked as well. An exemplary, non-
limiting REST query to a sample dataset is illustrated below.
It is noted that some or all calls can be secure socket layer
(SSL) secured.

https://api.sqlazureservices.com/UnService.sve/
UNESCO(120)

The $accountKey and $uniqueUserld elements are also
placed in the header of the request, which appears as
follows, for example:

$accountKey={developer account key}

$uniqueUserID={a GID representing the user}

The value in $accountKey represents the developer’s
account key, found in the Accounts Tab and the value in
$uniqueUserID represents the GID for the user accessing the
service.

The above example authenticating approach is non-lim-
iting in that other authenticating approaches are also pos-
sible, and thus the various embodiments described herein
can implement any alternative authentication approaches.
For instance, Basic Authorization (RFC 1945), with the
AccountKey as the password, or Access Control Server
(ACS) using a token based approach, or other token based
approaches can be used as well.

Accordingly, the infrastructure for information as a ser-
vice as described for one or more embodiments herein is a
new service or framework allowing developers and infor-
mation workers to easily discover, purchase, and manage
premium data subscriptions in any platform. The infrastruc-
ture is an information marketplace that brings data, imagery,
and real-time web services from leading commercial data
providers and authoritative public data sources, as well as
non-authoritative publishers, together into a single or mul-
tiple locations that are unified under a common provisioning
and billing framework. Additionally, developers and infor-
mation workers can consume this premium content with
virtually any platform, application or business workflow.

US 9,477,730 B2

13

Some exemplary, non-limiting scenarios for using the
infrastructure for information as a service as described for
one or more embodiments herein include: (a) finding pre-
mium content to next-generation “killer apps” for consumer
and business scenarios, (b) discovering and licensing valu-
able data to improve existing applications or reports, (c)
bringing disparate data sets together in innovative ways to
gain new insight into business performance and processes,
e.g., aggregation algorithms, (d) instantly and visually
exploring APIs across all content providers for blob, struc-
tured, and real-time web services and (e) consuming third
party data inside existing applications and data base sys-
tems, such as existing word processing, spreadsheet, data-
base query systems, etc., for rich reporting and analytics.

Benefits for developers include: (a) trial subscriptions
allow content to be investigated and applications to be
developed without paying data royalties, (b) simple trans-
action and subscription models allow “pay as you go or
grow” access to multi-million dollar datasets, (c) consistent
REST based APIs across datasets facilitate development on
any platform, (d) visually building and exploring APIs,
previewing results and (e) automatic C# proxy classes
provide instant object models and eliminate the need to write
tedious XML and web service code.

Benefits for Information Workers include: (a) integration
with PowerPivot to easily work with data in existing spread-
sheet software such as, but not limited to, Excel, (b) simple,
predictable licensing models for acquiring content and (c)
the ability to consume data from a structured query language
(SQL) Server, SQL Database, and other pre-existing assets.

Benefits for Content Partners include: (a) easy publication
and on-boarding process regardless of blob data, structured
data, or dynamic web services, (b) developer tooling on the
selected platform to ease development, e.g., viaNET or
other runtime system development, (¢) exposing developer
content to global developer and information worker com-
munity, (d) content discovery and integration inside pre-
existing content consumption applications and (e) a scalable
cloud computing platform handles storage, delivery, billing,
and reporting on behalf of all parties.

In a non-limiting implementation of the infrastructure for
information as a service as described for one or more
embodiments herein, some features for Rich Web Services
include: (a) secure, REST based model for consuming
services across the entire content catalog, (b) dynamic
pagination built into the APIs to simplify access, (c) Stan-
dard ATOM 1.0 feeds are available for most of the services
and (d) consistent billing, provisioning, and usage reporting
across all services.

In a non-limiting implementation of the infrastructure for
information as a service as described for one or more
embodiments herein, some features for a Service Explorer
component include: (a) C# proxy classes generated to sim-
plify development, (b) preview of data in tabular form and
as a feed, such as an ATOM 1.0 feed, if supported, (c)
invocation of the service to understand the results that the
compiled service call returns, (d) discovery of documenta-
tion and sample values for each of the parameters and (e)
instant copying of the visually built URL for a service call
into clipboard to ease development.

In a non-limiting implementation of the infrastructure for
information as a service as described for one or more
embodiments herein, some features for a Marketplace Inte-
gration and Discovery Portal component include: (a) dis-
covery of new data across domains including consumers and
businesses, (b) management of service subscriptions and
usage limits, (¢) management of account keys to access the

10

15

20

25

30

40

45

55

60

14

services and (d) detailed access reporting containing the
services/datasets that were accessed, grouped by date and by
account key.

The infrastructure provides a variety of value propositions
for content owners, application developers/ISVs and for
information workers and other consumers/subscribers. For
content owners, the infrastructure enables monetization
from data (for data providers who charge for the data), in
addition to social benefits for data providers who do not
charge for data, but derive benefit from the publication of
such data in other ways. Due to the openness of the
infrastructure, content owners enjoy greater availability and
reach of data to ISVs and consumers/information workers,
and all of this comes at a lower cost, particularly over
developing a proprietary model as in the past.

For application developers/ISVs, the infrastructure
enables access to data in a consistent format, variable and
low-cost pricing model for data access. predictable pricing,
profit potential from consumers/IWs using the applications
built using the data, broader reach to consumers through any
platform and a single billing and data source

For information workers/consumers, the infrastructure
enables added value from applications, consumption of data
in current large object (LOB) or IW software, a variable and
low-cost pricing model for data access in addition to a single
billing and data source.

Accordingly, the infrastructure solves a current customer
and developer pain point with a potentially significant
revenue upside, creates business intelligence opportunities
attached with instant data for modeling, reporting, analysis
and trending and creates adoption and stickiness for any
platform by encouraging data owners to store their data via
the infrastructure, thereby differentiating the infrastructure’s
value proposition when compared with conventional cloud
storage environments.

As shown in the flow diagram of FIG. 10, at 1000,
described herein are various ways for content owners or
publishers to publish data via the infrastructure. At 1010,
there are a variety of tools that allow developers to developer
applications for consuming the data via the infrastructure. At
1020, consumers or information workers use the applica-
tions or can directly query over the data to consume the data.
Lastly, the infrastructure provides a rich variety of tools at
1030 that enable automatic administration, auditing, billing,
etc. on behalf of all parties in the content chain, enabled by
the transaction model.

In this regard, some key parties in the infrastructure
include data owners, the application developers/ISVs and
the consumers/information workers. In general, data owners
are entities who want to charge for data, or who want to
provide data for free for other reasons, or enforce other
conditions over the data. In turn, application developers/
ISVs are entities who want to monetize their application
(e.g., through advertising, direct payments, indirect pay-
ments, etc.), or provide their application for free for some
beneficial reason to such entities. Information workers and
consumers are those who can use the raw data, or those who
want to use an application provided by the application
developers.

FIG. 11 is a block diagram generally illustrating the
various parties that can participate in an ecosystem provid-
ing information as a service as described herein. For instance
a set of network accessible information services 1100 pro-
vide access to a variety of trusted or untrusted data stores
1110, depending on the sensitivity or other characteristics of
the data. As shown, thus, what type of data store, 1112,
1114, . . ., 1116 is not so important since the ecosystem

US 9,477,730 B2

15

supports any kind of data, blob, structured, unstructured, etc.
As mentioned, the system includes publishers 1120 that add
data to the ecosystem, subscribers 1130 that consume the
data and application developers or providers 1150 who help
consumption of the data with their applications. An access
information generator 1170 can also govern access to the
data by various parties through maintaining or enforcing
account information, key information, etc. In this respect,
content owners 1160 can span any of the roles in that a
content owner 1160 can be a publisher 1120, a subscriber
1130 and/or an application developer as well. In one aspect,
the common infrastructure for all parties enables adminis-
tration 1165, auditing 1175, billing 1185 as well as other
desired ancillary services to the data transactions occurring
across the infrastructure.

In this regard, various embodiments for the user friendly
data platform for enabling information as a service from any
platform is an infrastructure to enable consumers of data
(IWs, developers, ISVs) and consumers of data to transact in
a simple, cost effective and convenient manner. The infra-
structure democratizes premium (private) and community
(public) data in an affordable way to allow IWs to draw
insights rapidly, allows developers to build innovative apps
using multiple sources of data in a creative manner and
enables developers to monetize their efforts on any platform.
For instance, the infrastructure supports Pay Per Use as well
as Subscription Pricing for Content, Pay for Content (“retail
price”—set by content owner), Pay Data Fee (“Shipping and
Handling”) and BW, and further supports Data fees as a
brokerage fee on a per-logical transaction basis (per report,
per API, per download, etc.).

For Information Workers (e.g., Office, SQL Server,
Dynamics users), the infrastructure supports subscriptions to
allow for future EA integration as well as predictable spend
requirements (as well as caching to support on and off-
premise Bl as well as “HPC” workloads). Thus, alternatives
include content priced per-user per-month; which may or
may not bundle to deliver content packs or per-transaction
pricing, e.g., allowing cloud reporting/business intelligence
on-demand pricing to eliminate the need to move large
amounts of data while allowing per-usage pricing, or vertical
apps via report galleries.

For content providers (any data type; any cloud), using
any platform, the infrastructure becomes a value proposition
to incent sales within any particular desired platform; auto-
scaling, higher level SLLA possibilities at no additional cost.
For some non-limiting examples, data can be secure and
associated data in the following domains: Location aware
services & data, Commercial and residential real estate,
Financial data and services, etc. A non-limiting scenario can
include delivery of data to top 30 non-governmental orga-
nization (NGO) datasets. In addition, the infrastructure can
include the ability to showcase BI & visualization through
“Bing for information as a service”, HPC, etc. Vertical
application opportunities exist as well.

In one non-limiting embodiment, the data brokerage can
be analogized to conventional brick and mortar strategies:
For instance, capacity can be represented as shelf space
(e.g., a mix of structured and unstructured/blob data), cost of
goods (COGS) can be represented as square footage, (SA,
platform dependency, bandwidth) and content can be rep-
resented as merchandise (e.g., optimize content providers to
cover COGS, maximize profits from IWs and developers).
In various embodiments, an onboarding process can be
implemented with quality bars for data and services, as well
as accommodation of service level agreements (SLAB).

25

30

40

45

55

16

FIG. 12 is an exemplary non-limiting implementation of
the infrastructure 1210 for information as a service as
described above according to one or more features. At the
interaction side are information workers 1200, developers
1202 and consumers 1204 who can communicate with the
infrastructure via SSL/REST based APIs 1206. A load
balancer 1208 can be used to help steer traffic in an optimal
way. In this regard, the input is routed to portal web roles
1220 or API web roles 1222. From the infrastructure 1210
to the data side is additional load balancing 1224 or 1226
(e.g., WA or SA) for access to blob data sets 1242, or blob
data set 1255 of cloud storage framework 1240, or to data
sets 1252 or data set 1254 of relational database frameworks
1250. Proxy layers 1228 can be used to access data 1262 or
data 1264 of third party clouds 1260. Content data abstract
layers (DALs) 1230 can be used to access content, where
applicable. In this regard, there can be duplication or overlap
of data sets across different types of storage, e.g., the same
data might be represented as blob data and as structured
data, e.g., SQL.

As supplemental services to the data, billing and discov-
ery services 1270 can include online billing 1272 (e.g.,
MOCP) or discovery services 1274 (e.g., pinpoint) and
authentication services 1280 can include credentials man-
agement 1282 (e.g., Live ID) or content authentication 1284,
e.g., authenticated content services (ACS). Accounts ser-
vices 1290 can include logging/audit services 1286 or
account management 1288. Management and operations
services 1292 can include an operations dashboard service
1294 and network operations service 1296, e.g., Gomez.

FIG. 13 is a block diagram illustrating an exemplary end
to end flow from data to consumers of the data in accordance
with one or more embodiments of the general infrastructure
for enabling information as a service. For instance, infor-
mation as a service 1300 can include commercial data 1302
and free data 1304, which can be of interest to various for
profit developers 1310, nonprofit developers 1312 with
non-profit motives and other information workers 1314 who
are interested in consuming the data generally for productive
goals. These entities can use discovery services 1320 to
determine what applications 1322, 1324, . . ., 1326 may be
of interest to them, and to ultimately transmit the data to ILA
consumers 1330 and DLA consumers 1332 alike.

The Open Data Protocol

Those skilled in the art will appreciate that network
interactions and information services can be practiced with
a variety of computer system configurations and protocols.
In this regard, one non-limiting implementation for querying
and updating data that can be used in one or more embodi-
ments described herein is the Open Data Protocol (OData).

OData is a web protocol for querying and updating data.
OData applies web technologies such as HyperText Transfer
Protocol (HTTP), Atom Publishing Protocol (AtomPub) and
JavaScript Object Notation (JSON) to provide access to
information from a variety of applications, services, and
stores. For some general background, OData emerged
organically based on the experiences implementing Atom-
Pub clients and servers in a variety of products over the past
several years. OData can be used to expose and access
information from a variety of sources, including, but not
limited to, relational databases, file systems, content man-
agement systems, and traditional web sites. OData has been
released under the Open Specification Promise (OSP) to
allow anyone to freely interoperate with OData implemen-
tations, in order to encourage growth of the ecosystem.
Features of OData can be incorporated into other protocols

US 9,477,730 B2

17

as well to form hybrid protocols with similar functionality
for querying and updating network data.

OData is consistent with the way the web works. In one
aspect, OData uses universal resource identifiers (URIs) as
a way to identify resources and uses an HTTP-centric
protocol with a uniform interface for interacting with those
resources, e.g., similar to the way that the Internet works. In
one non-limiting aspect, OData builds on the conventions
over HTTP popularized by AtomPub, which have simplified
the process of sharing data, content and information across
independently developed systems. OData defines additional
conventions that implementations can optionally implement
to support basic query and schema information to be
exchanged. To simplify integration with HTML and
JavaScript clients, OData defines an optional JSON repre-
sentation of the protocol that complements the XML-based
AtomPub format. As one can appreciate, additional imple-
mentation specific or other details regarding the OData
protocol can be found at www.odata.org.

Exemplary Networked and Distributed Environments

One of ordinary skill in the art can appreciate that the
various embodiments of methods and devices for an infra-
structure for information as a service from any platform and
related embodiments described herein can be implemented
in connection with any computer or other client or server
device, which can be deployed as part of a computer
network or in a distributed computing environment, and can
be connected to any kind of data store. In this regard, the
various embodiments described herein can be implemented
in any computer system or environment having any number
of memory or storage units, and any number of applications
and processes occurring across any number of storage units.
This includes, but is not limited to, an environment with
server computers and client computers deployed in a net-
work environment or a distributed computing environment,
having remote or local storage.

FIG. 14 provides a non-limiting schematic diagram of an
exemplary networked or distributed computing environ-
ment. The distributed computing environment comprises
computing objects or devices 1410, 1412, etc. and comput-
ing objects or devices 1420, 1422, 1424, 1426, 1428, etc.,
which may include programs, methods, data stores, pro-
grammable logic, etc., as represented by applications 1430,
1432, 1434, 1436, 1438. It can be appreciated that comput-
ing objects or devices 1410, 1412, etc. and computing
objects or devices 1420, 1422, 1424, 1426, 1428, etc. may
comprise different devices, such as PDAs, audio/video
devices, mobile phones, MP3 players, laptops, etc.

Each computing object or device 1410, 1412, etc. and
computing objects or devices 1420, 1422, 1424, 1426, 1428,
etc. can communicate with one or more other computing
objects or devices 1410, 1412, etc. and computing objects or
devices 1420, 1422, 1424, 1426, 1428, etc. by way of the
communications network 1440, either directly or indirectly.
Even though illustrated as a single element in FIG. 14,
network 1440 may comprise other computing objects and
computing devices that provide services to the system of
FIG. 14, and/or may represent multiple interconnected net-
works, which are not shown. Each computing object or
device 1410, 1412, etc. or 1420, 1422, 1424, 1426, 1428,
etc. can also contain an application, such as applications
1430, 1432, 1434, 1436, 1438, that might make use of an
API, or other object, software, firmware and/or hardware,
suitable for communication with or implementation of an
infrastructure for information as a service from any platform
as provided in accordance with various embodiments.

20

35

40

45

18

There are a variety of systems, components, and network
configurations that support distributed computing environ-
ments. For example, computing systems can be connected
together by wired or wireless systems, by local networks or
widely distributed networks. Currently, many networks are
coupled to the Internet, which provides an infrastructure for
widely distributed computing and encompasses many dif-
ferent networks, though any network infrastructure can be
used for exemplary communications made incident to the
techniques as described in various embodiments.

Thus, a host of network topologies and network infra-
structures, such as client/server, peer-to-peer, or hybrid
architectures, can be utilized. In a client/server architecture,
particularly a networked system, a client is usually a com-
puter that accesses shared network resources provided by
another computer, e.g., a server. In the illustration of FIG.
14, as a non-limiting example, computing objects or devices
1420, 1422, 1424, 1426, 1428, etc. can be thought of as
clients and computing objects or devices 1410, 1412, etc.
can be thought of as servers where computing objects or
devices 1410, 1412, etc. provide data services, such as
receiving data from computing objects or devices 1420,
1422, 1424, 1426, 1428, etc., storing of data, processing of
data, transmitting data to computing objects or devices 1420,
1422, 1424, 1426, 1428, etc., although any computer can be
considered a client, a server, or both, depending on the
circumstances. Any of these computing devices may be
processing data, or requesting services or tasks that may
implicate an infrastructure for information as a service from
any platform and related techniques as described herein for
one or more embodiments.

A server is typically a remote computer system accessible
over a remote or local network, such as the Internet or
wireless network infrastructures. The client process may be
active in a first computer system, and the server process may
be active in a second computer system, communicating with
one another over a communications medium, thus providing
distributed functionality and allowing multiple clients to
take advantage of the information-gathering capabilities of
the server. Any software objects utilized pursuant to the user
profiling can be provided standalone, or distributed across
multiple computing devices or objects.

In a network environment in which the communications
network/bus 1440 is the Internet, for example, the comput-
ing objects or devices 1410, 1412, etc. can be Web servers
with which the computing objects or devices 1420, 1422,
1424, 1426, 1428, etc. communicate via any of a number of
known protocols, such as HTTP. As mentioned, computing
objects or devices 1410, 1412, etc. may also serve as
computing objects or devices 1420, 1422, 1424, 1426, 1428,
etc., or vice versa, as may be characteristic of a distributed
computing environment.

Exemplary Computing Device

As mentioned, various embodiments described herein
apply to any device wherein it may be desirable to imple-
ment one or pieces of an infrastructure for information as a
service from any platform. It is understood, therefore, that
handheld, portable and other computing devices and com-
puting objects of all kinds are contemplated for use in
connection with the various embodiments described herein,
i.e., anywhere that a device may provide some functionality
in connection with an infrastructure for information as a
service from any platform. Accordingly, the below general
purpose remote computer described below in FIG. 15 is but
one example, and the embodiments of the subject disclosure

US 9,477,730 B2

19

may be implemented with any client having network/bus
interoperability and interaction.

Although not required, any of the embodiments can partly
be implemented via an operating system, for use by a
developer of services for a device or object, and/or included
within application software that operates in connection with
the operable component(s). Software may be described in
the general context of computer-executable instructions,
such as program modules, being executed by one or more
computers, such as client workstations, servers or other
devices. Those skilled in the art will appreciate that network
interactions may be practiced with a variety of computer
system configurations and protocols.

FIG. 15 thus illustrates an example of a suitable comput-
ing system environment 1500 in which one or more of the
embodiments may be implemented, although as made clear
above, the computing system environment 1500 is only one
example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or
functionality of any of the embodiments. The computing
environment 1500 is not to be interpreted as having any
dependency or requirement relating to any one or combina-
tion of components illustrated in the exemplary operating
environment 1500.

With reference to FIG. 15, an exemplary remote device
for implementing one or more embodiments herein can
include a general purpose computing device in the form of
a handheld computer 1510. Components of handheld com-
puter 1510 may include, but are not limited to, a processing
unit 1520, a system memory 1530, and a system bus 1521
that couples various system components including the sys-
tem memory to the processing unit 1520.

Computer 1510 typically includes a variety of computer
readable media and can be any available media that can be
accessed by computer 1510. The system memory 1530 may
include computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory
(ROM) and/or random access memory (RAM). By way of
example, and not limitation, memory 1530 may also include
an operating system, application programs, other program
modules, and program data.

A user may enter commands and information into the
computer 1510 through input devices 1540 A monitor or
other type of display device is also connected to the system
bus 1521 via an interface, such as output interface 1550. In
addition to a monitor, computers may also include other
peripheral output devices such as speakers and a printer,
which may be connected through output interface 1550.

The computer 1510 may operate in a networked or
distributed environment using logical connections to one or
more other remote computers, such as remote computer
1570. The remote computer 1570 may be a personal com-
puter, a server, a router, a network PC, a peer device or other
common network node, or any other remote media con-
sumption or transmission device, and may include any or all
of the elements described above relative to the computer
1510. The logical connections depicted in FIG. 15 include a
network 1571, such local area network (LAN) or a wide area
network (WAN), but may also include other networks/buses.
Such networking environments are commonplace in homes,
offices, enterprise-wide computer networks, intranets and
the Internet.

As mentioned above, while exemplary embodiments have
been described in connection with various computing
devices, networks and advertising architectures, the under-
lying concepts may be applied to any network system and
any computing device or system in which it is desirable to

20

30

40

45

20

publish, build applications for or consume data in connec-
tion with interactions with a cloud or network service.

There are multiple ways of implementing one or more of
the embodiments described herein, e.g., an appropriate API,
tool kit, driver code, operating system, control, standalone or
downloadable software object, etc. which enables applica-
tions and services to use the infrastructure for information as
a service from any platform. Embodiments may be contem-
plated from the standpoint of an API (or other software
object), as well as from a software or hardware object that
facilitates provision of an infrastructure for information as a
service from any platform in accordance with one or more
of'the described embodiments. Various implementations and
embodiments described herein may have aspects that are
wholly in hardware, partly in hardware and partly in soft-
ware, as well as in software.

The word “exemplary” is used herein to mean serving as
an example, instance, or illustration. For the avoidance of
doubt, the subject matter disclosed herein is not limited by
such examples. In addition, any aspect or design described
herein as “exemplary” is not necessarily to be construed as
preferred or advantageous over other aspects or designs, nor
is it meant to preclude equivalent exemplary structures and
techniques known to those of ordinary skill in the art.
Furthermore, to the extent that the terms “includes,” “has,”
“contains,” and other similar words are used in either the
detailed description or the claims, for the avoidance of
doubt, such terms are intended to be inclusive in a manner
similar to the term “comprising” as an open transition word
without precluding any additional or other elements.

As mentioned, the various techniques described herein
may be implemented in connection with hardware or soft-
ware or, where appropriate, with a combination of both. As
used herein, the terms “component,” “system” and the like
are likewise intended to refer to a computer-related entity,
either hardware, a combination of hardware and software,
software, or software in execution. For example, a compo-
nent may be, but is not limited to being, a process running
on a processor, a processor, an object, an executable, a
thread of execution, a program, and/or a computer. By way
of illustration, both an application running on computer and
the computer can be a component. One or more components
may reside within a process and/or thread of execution and
a component may be localized on one computer and/or
distributed between two or more computers.

The aforementioned systems have been described with
respect to interaction between several components. It can be
appreciated that such systems and components can include
those components or specified sub-components, some of the
specified components or sub-components, and/or additional
components, and according to various permutations and
combinations of the foregoing. Sub-components can also be
implemented as components communicatively coupled to
other components rather than included within parent com-
ponents (hierarchical). Additionally, it is noted that one or
more components may be combined into a single component
providing aggregate functionality or divided into several
separate sub-components, and any one or more middle
layers, such as a management layer, may be provided to
communicatively couple to such sub-components in order to
provide integrated functionality. Any components described
herein may also interact with one or more other components
not specifically described herein but generally known by
those of skill in the art.

In view of the exemplary systems described supra, meth-
odologies that may be implemented in accordance with the
disclosed subject matter can be appreciated with reference to

US 9,477,730 B2

21

the flowcharts of the various figures. While for purposes of
simplicity of explanation, the methodologies are shown and
described as a series of blocks, it is to be understood and
appreciated that the claimed subject matter is not limited by
the order of the blocks, as some blocks may occur in
different orders and/or concurrently with other blocks from
what is depicted and described herein. Where non-sequen-
tial, or branched, flow is illustrated via flowchart, it can be
appreciated that various other branches, flow paths, and
orders of the blocks, may be implemented which achieve the
same or a similar result. Moreover, not all illustrated blocks
may be required to implement the methodologies described
hereinafter.

While in some embodiments, a client side perspective is
illustrated, it is to be understood for the avoidance of doubt
that a corresponding server perspective exists, or vice versa.
Similarly, where a method is practiced, a corresponding
device can be provided having storage and at least one
processor configured to practice that method via one or more
components.

While the various embodiments have been described in
connection with the preferred embodiments of the various
figures, it is to be understood that other similar embodiments
may be used or modifications and additions may be made to
the described embodiment for performing the same function
without deviating there from. Still further, one or more
aspects of the above described embodiments may be imple-
mented in or across a plurality of processing chips or
devices, and storage may similarly be affected across a
plurality of devices. Therefore, the present invention should
not be limited to any single embodiment, but rather should
be construed in breadth and scope in accordance with the
appended claims.

What is claimed is:

1. A computer system, the computer system comprising:

a processor;

system memory coupled to the processor, the system

memory storing instructions that are executable by the
processor; and

the processor executing the instructions stored in the

system memory to:
receive a request to consume data maintained at a
service;
access a portion of data output by the service in a
service response, the portion of data in an arbitrary
form, the arbitrary form used by the service;
associate third party code with a transform assembly;
the transform assembly comprises at least one appli-
cation programming interface (API) according to a
manifest based on a conceptual model (CSDL);
use the transform assembly and the third party code to
provide an enhanced data feature associated with the
portion of data by transforming the portion of data in
the arbitrary form into other data in a standardized
format in the system memory so that data provided
by the service managed like data from a relational
store in a uniform manner, transforming the data
including:
identify one or more transformation functions pre-
viously selected by a content provider of the
service, the one or more transformation functions
matched to the arbitrary form by the content
provider to transform data from the arbitrary form
to the standardized format, the one or more trans-
form functions selected, from among a plurality of
offered transform functions, through a user inter-
face based on input from the content provider, the

10

15

20

25

30

35

40

45

50

55

60

22

one or more transform functions maintained in a
local library or accessed from an external library;
and

apply the transform assembly, which calls the one or
more transformation functions, to the portion of
data to transform the portion of data from the
arbitrary form to the other data in the standardized
format, applying the one or more transform func-
tions allowing the service to be substantially
treated like the relational store; and

provide the generated other data from the system

memory in an outgoing response to the received

request.

2. The computer system of claim 1, further comprising the
processor executing the instructions to map the service onto
a parameterized function.

3. The computer system of claim 1, further comprising the
processor executing the instructions to:

process the other portion of data in the standardized

format to realize a relational store capability of the
service, wherein processing includes performing at
least one of a projection, an ordering, or a joining on a
tabular result.

4. The computer system of claim 1, wherein the processor
executing the instructions stored in the system memory to
apply the transform assembly comprises the processor
executing the instructions stored in the system memory to
apply the one or more transformation functions to treat the
service like the relational store with some degradation based
on behavior of the service.

5. The computer system of claim 4, wherein the processor
executing the instructions stored in the system memory to
treat the service like the relational store with some degra-
dation based on behavior of the service comprises the
processor executing the instructions stored in the system
memory to transform behavior of the service for compliance
with information as a service.

6. The computer system of claim 1, further comprising the
processor executing the third party code at runtime to
provide a runtime service associated with the transform
assembly.

7. The computer system of claim 1, further comprising the
processor executing the third party code at load time to
provide a load time service associated with the transform
assembly.

8. The computer system of claim 1, further comprising the
processor executing the third party code in conjunction with
uploading the transform assembly at a runtime unit to
provide an on-boarding time service associated with the
transform assembly.

9. The computer system of claim 1, further comprising the
processor executing the instructions to:

receive a second request to consume second data main-

tained at a second different service;

access a second portion of data output by the second

service, the second portion of data in a second different
arbitrary form, the second different arbitrary form used
by the second service;

generate second other data responsive to the second

request by transforming the second portion of data from
the second different arbitrary form into the second other
data in the standardized format so that data from the
second service can be managed along with data from
the relational store in the uniform manner, transforming
the data including:
identify a second one or more transformation functions
previously selected by a second different content

US 9,477,730 B2

23

provider, the second one or more transformation
functions matched to the second arbitrary form by
the second different content provider to transform
data from the second arbitrary form to the standard-
ized format, the second one or more transform func-
tions selected, from among the plurality of offered
transform functions, through a user interface based
on input from the second different content provider;
and

apply the second one or more transform functions to the
second portion of data to transform the second
portion of data from the second different arbitrary
form to the second other data in the standardized
format, applying the second one or more transform
functions allowing the second service to be substan-
tially treated like the relational store; and

provide the generated second other data in an additional

outgoing response.

10. A processor implemented method for use at a com-
puter system, the computer system including a processor and
system memory, the processor implemented method imple-
mented on the processor for transforming service behavior
into behavior compliant with information as a service, the
processor implemented method comprising:

displaying a user interface, using the processor, to a

content provider, wherein the content provider is asso-
ciated with consumable data managed by a service, the
consumable data in an arbitrary form compatible with
the behavior of the service;

receiving an input from the content provider via the user

interface, using the processor, wherein the input iden-
tifies at least one transform function selected by the
content provider, the at least one transform function for
use in transforming data from the arbitrary form into
other data in a standardized format so that data pro-
vided by the service can be managed along with data
from a relational store in a uniform manner, the at least
one transform selected, from among a plurality of
available transforms, by the content provider, the at
least one transform matched to the arbitrary form by the
content provider, the at least one transform function
maintained in a local library or accessed from an
external library;

generating a transform assembly in the system memory

for uploading to a runtime unit, the transform assembly
including the at least one transform based on the
received input, wherein the transform assembly along
with associated third party code to provide an enhanced
data feature for associated data by transforming data
from the arbitrary form to other data in the standardized
format allowing the service to be substantially treated
like the relational store using at least one application
programming interface (API) according to a manifest
based on a conceptual model (CSDL), including:
accessing data in the arbitrary form; and
apply the transform assembly, which calls the at least
one transform function, to transform the data from
the arbitrary form into the other data in the standard-
ized format; and

providing the transformed data from the system memory

in an outgoing response.

11. The method of claim 10, wherein the transform
assembly transforms the data from the arbitrary form into at

20

25

30

35

40

45

55

60

24

least one of: a tabular result, a JavaScript Object Notation
(JSON) result, an Atom Syndication Format (ATOM) result,
an Really Simple Syndication (RSS) result, or an Extensible
Markup Language (XML) result.

12. The method of claim 10, wherein generating a trans-
form assembly comprises linking a first transform function
with a second transform function.

13. The method of claim 12, wherein at least one of the
first transform function or the second transform function are
provided by an independent software vendor (ISV).

14. The method of claim 10, wherein receiving an input
from the content provider comprises receiving a codeless
input from the content provider, and wherein generating a
transform assembly comprises executing at least one appli-
cation programming interface (API) according to a manifest
based on a conceptual model (CSDL).

15. The method of claim 10, wherein generating a trans-
form assembly comprises binding the at least one transform
function to a graphical representation of transformed data.

16. At a computer system, the computer system including
a processor and system memory, a method for transforming
web service behavior for compliance with information as a
service, the method comprising the processor:

receiving a request to consume data maintained at a

service;

accessing a portion of data output by the web service, the

portion of data in an arbitrary form, the arbitrary form
used by the web service;

associating third party code with a transformation assem-

bly, the transform assembly comprises at least one

application programming interface (API) according to

a manifest based on a conceptual model (CSDL);

use the transform assembly and the third party to provide

an enhanced feature associated with the portion of data

by transforming the portion of data in the arbitrary form

into the other data in a standardized format in the

system memory so that data from the service managed

along with data from a relational store in a uniform

manner, including:

identifying an one or more transformation functions
previously selected by a content provider of the web
service, the one or more transformation functions
matched to the arbitrary form by the content provider
to transform data from the arbitrary form to the
standardized format, the one or more transform func-
tions selected, from among a plurality of offered
transform functions, based on input from the content
provider, the one or more transform functions main-
tained in a local library or accessed from an external
library; and

applying the transform function, which calls the one or
more transformation functions, to the portion of data
to transform the portion of data from the arbitrary
form to the other data in the standardized format,
applying the one or more transform functions allow-
ing the service to be substantially treated like the
relational store; and

providing the generated other data from the system

memory in an outgoing response to the received
request.

